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Semi-supervised learning based on GAN with
mean and variance feature matching

Cong Hu, Xiao-jun Wu∗, Josef Kittler

Abstract—Improved generative adversarial network (Improved GAN) is a successful method by using generative adversarial model to
solve the problem of semi-supervised learning. Improved GAN learns a generator with the technique of mean feature matching which
penalizes the discrepancy of the first order moment of the latent features. To better describe common attributes of a distribution, the
paper proposes a novel semi-supervised learning method which incorporates the first order moment and the second order moment of
the features in an intermediate layer of the discriminator, called mean and variance feature matching GAN(MVFM-GAN). To capture
more precisely the data manifold, not only mean but also variance is used in the latent feature learning. Compared with improved gan
and other traditional methods, MVFM-GAN shows its superior performance of semi-supervised classification and the stability of GAN
training, particularly in the cases when the number of labelled samples is low. It shows the comparable performance with the
state-of-the-art methods on several benchmark datasets. As a byproduct of the novel approach, MVFM-GAN can generate realistic
images with good visual quality.

Index Terms—Semi-supervised learning, generative adversarial networks, feature matching, neural network, image recognition.
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1 INTRODUCTION

I T is well-known that supervised learning models for deep
learning, such as convolutional neural networks(CNN)

and long short term memory (LSTM) networks, have re-
cently been advancing dramatically, enabling successful
applications to many computational tasks including object
recognition [1], [2], [3], [4], speech recognition [5], [6], [7],
image caption generation [8], [9], [10], machine translation
[11], [12], medical detection [13], video restoration [14],
image synthesis [15] and so on. Some traditional methods
also have achieved great performance on several visual
tasks, such as image synthesis [16], [17], [18], [19], image
representation [20], [21], landmark detection [22], [23] and
so on. Despite these successes, these supervised learning
methods have one common bottleneck, namely it is expen-
sive and time-consuming to obtain enough labelled samples
to train the deep model and capture the intrinsic structure
of the data. Consequently, semi-supervised learning(SSL),
which learns from a combination of unlabelled data and few
labelled data for better performance than using the labelled
data alone, has attracted considerable attention.
In this work we focus on generative models in SSL due to
their ability to capture the salient properties and structure
of data. Deep generative models are particularly appealing
because they are capable of learning a latent manifold on
which the data has high density. Learning this manifold
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Fig. 1. The architecture of GAN.

allows smooth variations in the latent space to result in
meaningful transformations in the original space, effectively
traversing between high density modes through low density
areas. The generative adversarial network approach [24]
is a framework for training generative models, which we
briefly review. The architecture of GAN is shown as figure
1. It consists of two networks pitted against one another in
a two player game: A generative model, G, is trained to
synthesize images resembling the data distribution and a
discriminative model, D, is trained to distinguish between
samples drawn from G and images drawn from the training
data. The generator generates unlabeled realistic samples
from the latent model to improve the discriminate ability
of the discriminator. More representative estimates also are
obtained by using additional unlabeled samples.

The Improved GAN with mean feature matching(FM)
achieved a state-of-the-art performance in semi-supervised
learning. Distinguishing two distributions by finite samples
is known as Two-Sample Test in statistics. Our proposed
method MVFM-GAN, as a kind of generative methods, is
used for semi-supervised learning based on this principle
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of statistics. The hypothesis that the real and fake samples
sampled from the same latent model is used. Real and fake
samples linked by estimating the parameters of the latent
model, such as mean and variance. To better describe the
geometry of a probability distribution, the second moments
variances are usually employed in practice. Inspired by
MMD and mean feature matching, we propose to embed
distributions in a finite dimensional feature space and to
match them based on not only their means but also vari-
ances feature statistics, since incorporating first and second
order statistics has a better chance to capture the various
modes of the distribution. The two reasons why our method
could improve the GAN can summarized as follow: 1) The
additional unlabelled data generated from our methods
MVFM-GAN improved the representative ability of the
model. 2)Combining the first-order moment mean and the
second-order moment variance can capture more precisely
the data manifold and the geometry of the probability
distribution. By comparison with various strong competi-
tors including improved GAN, we show that our proposed
method MVFM-GAN achieves the state-of-the-art results in
semi-supervised learning on MNIST, SVHN, CIFAR-10 and
STL-10 benchmark datasets.
The major contributions of this paper lie in:
(1)In our proposed MVFM-GAN, the variance discrepancy
as a loss function is used for minimizing the distributional
difference between the generated data and the real data.
(2)It is very easy to implement in the generative adversarial
nets for the proposed loss function. The standard SGD and
Adam can be directly used for optimizing our MVFM-GAN
model.
(3)In terms of semi-supervised learning, we verify the su-
perior performance of our proposed method than the im-
proved GAN and other traditional methods.

2 RELATED WORK

2.1 Literature Review
Originally, semi-supervised learning came to prominence
in the 1970s. The earliest recorded approach is named
self-learning, an iterative procedure where some unlabelled
samples are labelled by the best predictions made by the
supervised model, thereby providing more training samples
for the supervised learning algorithm. Blum and Mitchell′s
co-training [25] offers an approach, where two models are
trained on two separate subsets of the data features. The
labels of samples predicted with confidence by one model
are then used for supervised training of the other model.
In the late 1990s, transductive Support Vector Machine
(TSVM) [26] was a popular technique. Similar to the regular
SVM, TSVM aims to maximise the margin between the
training samples and the decision boundary. Additionally,
the distance of unlabelled data to the margin was maximised
simultaneously. However, this kind of semi-supervised SVM
optimisation problem is difficult to solve because it is non-
convex. A graph-based approach was proposed as another
concept for SSL. In the method, a graph is constructed by
connecting samples by edges attributed by some measure
of similarity. A label propagation mechamism [27] was
then used to minimise the difference between the predicted
labels for nodes with heavily weighted edges. By virtue of

this process, label information propagates from the labelled
samples to unlabelled samples in their neighbourhood.
Later, unsupervised learning evolved to deep learning
methods such as autoencoders [28] [Hinton (2009)]. These
methods are often used to extract features from the
data in an unsupervised fashion. The labels provided
are then used to train a classifier in the derived feature
space. Since the unsupervised feature learning and the
supervised learning stages were already decoupled, such
deep learning approaches can naturally be extended to
SSL, where one can simply train the predictor model with
just the smaller, labelled data subset in the supervised
stage. Because of this synergy, autoencoders were always
involved in neural network based SSL. Pseudolabel [29]
is an early SSL approach that made use of autoencoders
and it is essentially a self-learning method. Prior to each
iteration, the current most confident prediction of the model
temporarily labelles the unlabelled samples and then the
model is updated on the combined labelled and unlabelled
data. Ladder Network [30] is another SSL approach
offering competitive performance, whose starting point is
essentially an autoencoder. Variational autoencoders (VAE)
[31] is another autoencoders-based method used in some
SSL related works. One successful example is the auxiliary
deep generative model(ADGM) [32], which extends
VAE with auxiliary variables to improve the variational
approximation. The auxiliary variables leave the generative
model unchanged but make the variational distribution
more expressive. Virtual adversarial training(VAT) [33]
is a regularization approach based on virtual adversarial
loss, which measures the local smoothness of the output
distribution. VAT aims to find the optimal adversarial
perturbation of a real data input and maximizes the KL
divergence between the output of the original samples and
that of perturbed samples.
Recently, the Generative Adversarial Networks (GANs)
[24] have been shown to exhibit promising performance
in unsupervised learning and semi-supervised learning.
GANs learn generative models based on the theory of
Nash Equilibrium. The GANs learn two sub-networks: a
generator and a discriminator. The generator transforms
noise z to x = G(z; θ(G)) in order to generate data
consistent with the real data distribution pdata(x), fooling
the discriminator into accepting the generated data as
being real. The discriminator is trained to reveal whether a
sample is generated or real. The original work showed that
in GAN this objective is defined by the Jensen-Shannon
divergence. Other ϕ-divergences were successfully used in
[34]. the Max-margin deep generative model(MMCVA) [35]
was proposed to improve the predictive performance of
deep generative models with the discriminative principle of
max-margin learning. On the other hand, the Adversarially
Learned Inference(ALI) [36] architecture was designed to
learn an inference model during the GAN training process.
It also achieved competitive SSL results. Triple GAN [37]
used the data produced by the GAN generator as additional
training data for improving the SSL performance. CatGAN
[38] provided an approach for training a classification
model and GAN for SSL simultaneously by introducing
a categorical cross-entropy loss term. The badGAN [39]
generated the ”bad” samples in low density regions where
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the training data is rare based on the low density separtion
assumption. Images with random patches removed are
used as the input of generator of CC-GAN [40]. It achieved
good performance in semi-supervised learning.
The Maximum Mean Discrepancy objective(MMD) for
GAN training was proposed in [41], [42], named GMMN.
MMD is a centerpiece of non-parametric two-sample test to
determine the distance distribution. During the training of
GAN, the generator is trained to test the hypothesis that the
generated sample satisfies the MMD distance. Inspired by
MMD, the Improved GAN [43] demonstrated an excellent
performance in SSL, showing that one can train the GAN
discriminator using the objective of vanilla GAN while
training the generator using Lq mean feature matching.
In the method, two vectors of average features are given
in a latent layer, one from the real data and one from the
fake data. The Lq norm of the difference between these
vectors is then added as a cost to the generator. In this
way, the generator gains an additional training signal that
encourages it to produce images whose features, according
to the discriminator, match those of real images.

2.2 Maximum Mean Discrepancy

Given two datasets X = {xi}Ni=1 and Y = {yj}Mj=1, we wish
to consider the question of proving whether the generating
distributions are the same, i.e. PX = PY . The two-sample
test [44] is a useful method for addressing this kind of
problem. One of the most successful methods is an estimator
known as the maximum mean discrepancy(MMD). MMD
compares the means between the two sets of samples. If the
means of the two datasets are similar then they are likely
come from the same generating distribution. The objective
of MMD is given by

LMMD =‖ E(φ(xi))− E(φ(yj)) ‖q (1)

where φ(•) is a vector embedding function which maps
sample • to a feature space. To match the mean statistics
of the two distributions, any lq norm ‖ • ‖q can be used.
Taking φ to be the identity function leads to matching the
sample mean. Minimizing MMD is equivalent to minimiz-
ing a distance between the two distributions. If and only if
PX = PY , MMD is equal to 0 [44], [45].
l2 norm is adopted to measure the MMD. The mean squared
error of the expectations of the two distributions PX and PY
is shown as:

LMMD2 = ‖ E(φ(xi))− E(φ(yj)) ‖22

= ‖ 1

N

N∑
i=1

φ(xi)−
1

M

M∑
j=1

φ(yj) ‖22

=
1

N2

N∑
i=1

N∑
i′=1

φ(xi)
Tφ(xi′)

− 2

NM

N∑
i=1

M∑
j=1

φ(xi)
Tφ(yj)

+
1

M2

M∑
j=1

M∑
j′=1

φ(yj)
Tφ(yj′).

(2)

3 MEAN AND VARIANCE FEATURE MATCHING
GAN(MVFM-GAN)
3.1 Max variance discrepancy
MMD compares two distributions by comparing the means
of their feature embedding. However, relying just on the
first order statistics is a rather simplistic way to compare
two distributions. Our aim is to extend the distribution dis-
crepancy measure so as to reflect also second order statistics,
i.e variance information of feature embeddings.
In order to make the two distributions to be as close as possi-
ble, the statistics that we should consider is not only the first
order moment - mean, but also the second order moment -
variance. Inspired by the MMD in equation(1), in this paper,
we propose the Maximum variance discrepancy(MVD) as
follows,

LMVD =‖ V ar(φ(xi))− V ar(φ(yj)) ‖q (3)

where, the vector of variances of the feature space embed-
ding of the input data, V ar(•), is defined as

V ar(φ(xi)) = E[φ(xi)− E(φ(xi)]
2, (4)

V ar(φ(yj)) = E[φ(yj)− E(φ(yj)]
2. (5)

3.2 Mean and variance feature matching
To improve the instability of GANs, feature matching(FM)
aims to prevent the generator from over training on the dis-
criminator by assigning a novel objective to the generator.
Different from the objective of vanilla GAN by maximizing
the output of the discriminator, this novel objective forces
the generator to produce data which can match the statistics
of the real data. And the statistics that are worth matching
will be specified as the objective. One natural choice of
statistics is mean value, matching the expected value of
the features of the real data and that of generated data.
In practise, mean statistic can not well effectively describe
the discrepancy of different distributions. Adding second
order information would enrich the discrimination power
of the feature space. Here, we incorporate both the first and
second order moment of every embedding dimensionality
by using the linear kernel to match the mean and variance of
features, named maximum mean and variance discrepancy.
The mean squared difference of the mean and variance of
the two sets of samples are used to train the generator.
Letting φ(x) denote activations on an intermediate layer
of the discriminator, our new objective for the generator is
defined as:

L = ‖ E(φ(xi))− E(φ(yj)) ‖q
+ λ ‖ V ar(φ(xi))− V ar(φ(yj)) ‖q

(6)

where ‖ • ‖q denotes the lq norm, E(•) and V ar(•) denote
the means and variances of the feature embeddings of data.

3.3 semi-supervised classification
Suppose a sample x is classified into one of the K possi-
ble classes. Softmax can turn x into the class probabilities
pmodel(y = j|x) =

exp(xj)∑K
k=1 exp(xk)

. To train supervised model,
the objective minimizes the cross-entropy between the pre-
dictive distribution pmodel(y|x) with the target labels. By
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adding another target class K + 1 into the classes, the gen-
erated samples that labelled with the new class y = K + 1
can be mixed with the real data as the new dataset to train
a semi-supervised model. Corresponding to the probability
1 − D(x) in the original GAN, pmodel(y = K + 1|x) is
used for representing the probability that x is fake. To
maximize logpmodel(y ∈ {1, ...,K}|x), we train the model
with unlabelled real data until these data correspond to the
K classes. As the same as the training manner of traditional
GAN, the detailed procedure of MVFM-GAN are carried
out in two steps.
At the first step, the discriminator D is optimized by mini-
mizing the objective L(D),

D∗ = argmin
D

L(D). (7)

The cost function to train the classifier is as follow:

L(D) =− Ex,y∼pdata(x,y)[logpmodel(y|x)]

− Ex∼G[logpmodel(y = K + 1|x)]

=Lsup + Lunsup

(8)

where,

Lsup = −Ex,y∼pdata(x,y)logpmodel(y|x, y < K + 1), (9)

Lunsup =− {Ex,y∼pdata(x,y)log[1− pmodel(y = K + 1|x)

+ Ex∼Glog[pmodel(y = K + 1|x)]}.
(10)

The cost function consists of two parts, supervised loss Lsup
and unsupervised Lunsup. Lsup is a standard supervised
loss function where we train the real labelled data to fit
the negative log probability of their corresponding labels.
pmodel(y = K + 1|x) denotes the probability that x is fake
data. And Lunsup is in fact the standard loss of original GAN
and D(x) is represented with 1− pmodel(y = K + 1|x), the
unsupervised loss is presented as follows:

Lunsup =− {Ex∼pdata(x)logD(x)

+ Ez∼noiselog(1−D(G(z)))},
(11)

D(x) denotes the probability that x is real data. By minimiz-
ing Lsup and Lunsup jointly, we train the semi-supervised
model to estimate this optimal solution. The Lsup and
Lunsup are estimated by training samples as follows:

Lsup = − 1

S

S∑
s=1

Zls,j=ys +
1

S

S∑
s=1

f(Zls), (12)

Lunsup =− 1

U

U∑
u=1

f(Zlu) +
1

U

U∑
u=1

loge(1 + ef(Z
l
u))

+
1

R

R∑
r=1

loge(1 + ef(Z
l
r)),

(13)

where,

f(Zli) = max(Zlij) +
Kl∑
j=1

eZ
l
ij−max(Z

l
ij) (14)

where, Zli denotes (the output of ith sample in the lth layer).
S,U and R respectively denote the number of labelled,
unlabelled and generated data. Zlij denotes the value of jth

Generator Discriminator

Real Data

MVFM

Fig. 2. The architecture of our proposed method MVFM-GAN.

unit of ith sample’s output(Zi) in lth layer. ys is the label
index of sth labelled sample. Kl denotes the dimension of
the lth layer. We use the last layer as the target layer when
training the discriminator D, and Kl is equal to the number
the classes K.
At the second step, the generator G is then optimized by
applying the optimized discriminatorD toG. Here, we train
the G using feature matching to force G to approximate
the real data generating distribution, with regularizing the
discrepancy of the statistics value of the embeddings. The
following objective computes the mean squared difference
of the means and variances of the activations of every
dimension in a certain latent layer of the discriminator.

G∗ = argmin
G

L(G), (15)

where,

L(G) =‖ Ex∼pdata(x)(φ(x))− Ez∼noise(φ(G(z))) ‖2q
+ λ ‖ V arx∼pdata(x)(φ(x))− V arz∼noise(φ(G(z))) ‖2q,

(16)

any Lq norm can be used to optimize the generator, in this
paper, we use the L2 norm. λ is the trade-off parameter. The
L(G) is estimated as follow:

L(G) =
1

Kl

Kl∑
j=1

(
1

U

U∑
u=1

Zluj −
1

R

R∑
r=1

Zlrj)
2

+
λ

Kl

Kl∑
j=1

[
1

U

U∑
u=1

(Zluj −
1

U

U∑
u=1

Zluj)
2

− 1

R

R∑
r=1

(Zlrj −
1

R

R∑
r=1

Zlrj)
2],

(17)

where, Kl denotes the dimension of lth layer. A certain
layer of discriminator is used for the target layer when
training the generator. U denotes the number of unlabelled
real data, and R is the number of generated data. In all the
experiments of this paper, we set U = R. The architecture
of MVFM-GAN is shown in Fig.2. In Algorithm 1, we
summarize the learning details of MVFM-GAN, and Adam
[46] is used to optimize our model.
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Algorithm 1 The MVFM-GAN training algorithm
Input:Training dataset X = {Xlabel, Xunlabel},
Xlabel = {(x1, y1), (x2, y2), ..., (xS , yS)}, Xunlabel =
{x1, x2, ..., xU}. Initialize all the parameters
Θ = {Θg,Θd} in generator and discriminator, trade-off
hyperparameter λ and Adam hyperparameter α. The
number of iteration t← 0.
Output: Θ = {Θg,Θd}
1: while θg does not converge do.
2: t← t+1.
3: Compute the cost of Lt(D) by Lt(D)← Ltsup(Xlabel)+
Ltunsup(X) with equations(8), (12) and (13).
4: Compute the backpropagation error to optimize dis-
criminator Θt

d ← Adam(∇θtdL
t(D), α).

5: Sample noisy data z ∼ p(z), Generated data Xg =
{G(z1), G(z2), ..., G(zR)}.
6: Compute the cost of mean and variance feature match-
ing Lt(G) with equations(17).
7: Fix the discriminator parameter Θt

d and compute
the backpropagation error to optimize generator Θt

g ←
Adam(∇θtgL

t(G), α).
8: end while

4 EXPERIMENTS

We perform semi-supervised experiments and sample
generation experiments on four benchmark datasets
including MNIST [47], CIFAR-10 [48], SVHN [49] and
STL-10 [50].

4.1 MNIST
MNIST is a well-known handwritten digits dataset. In the
first experiment, we train the proposed method on this stan-
dard benchmark dataset. This dataset comrpises samples of
digits 0 to 9(10-classes), in the form of 28×28 black and
white images. There are 60,000 training images and 10,000
test images. Before we input these images to our model,
the pixel values are scaled to the [0,1] range. Two fully
connected networks are used for the discriminator and the
generator in the original Improved GAN [43] paper. A batch
normalization and Gaussian noise are added to the output
of each layer. An overview of the networks is shown in Table
1.
To evaluate the performance of our method in semi-
supervised learning, we consider four sets labelled sam-
ples of size 50, 100, 200 and 1000, respectively. The clas-
sification results are averaged over 10 runs with labelled
subsets chosen at random, having a balanced number of
samples from each class. The remaining samples are used
for trained without labels. Fig.3 compares the classification
error of different versions of training obtained with Im-
proved GAN(FM) and our method MVFM-GAN. From the
results, we can easily see that our method achieves a better
rate of semi-supervised classification and a greater stability
of the GAN training, especially when only a few labelled
data is available. This suggests that constraining both the
mean and variance of the features in the latent space can
more easily model the manifold of the data and regularize
the distribution. We also compare our method with other

TABLE 1
Network architecture used for MNIST

Stage Layer Layer Type
0 Input Noise

100 units
1 Dense layer

500 units+softPlus+BatchNorm
Generator 2 Dense layer

500 units+softPlus+BatchNorm
3 Output

784 units+sigmoid+Scaling
4 Input layer

784 units+Gaussian noise σ = 0.3
5 Dense Layer

1000 units+ReLU+Gaussian noise σ = 0.5
6 Dense Layer

500 units+ReLU+Gaussian noise σ = 0.5
Discriminator 7 Dense Layer

250 units+ReLU+Gaussian noise σ = 0.5
8 Dense Layer

250 units+ReLU+Gaussian noise σ = 0.5
9 Dense Layer

250 units+ReLU+Gaussian noise σ = 0.5
10 Output Layer

(K classes)units+Softmax
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Fig. 3. MNIST classification error rate(%) evaluated after every epoch
for Improved GAN(FM) and MVFM-GAN† in semi-supervised learn-
ing.(a)50 labelled samples,(b)100 labelled samples,(c)200 labelled sam-
ples,(d)1000 labelled samples.

SSL methods and the results are summarized in Table 2.
Our method achieves the best semi-supervised classification
performance also among these method expect the BadGAN.
But our method is more stable than the BadGAN.
Some original samples and those generated during semi-
supervised learning using our method are shown in Fig. 4.
The generated samples look visually appealing and have
good visual quality.
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TABLE 2
Percentage of incorrectly predicted test samples for a given number of

labelled samples on the MNIST data set

Model Error rates(%)
NL 100

SVM 23.44
TSVM 16.81

Pseudolabel 10.49
VAE+SVM 11.82±0.25

VAE(M1+M2) 3.33±0.14
Ladder Network 1.06±0.037

Conv-Ladder Network 0.89±0.50
Skip DGM 1.32±0.07

Auxiliary DGM 0.96±0.02
VAT 1.36

MMCVA 1.24±0.54
Triple GAN 0.91

BadGAN 0.795±0.098
Cat-GAN 1.91±0.1

Improved GAN 0.93±0.065
Our model 0.81±0.04

(a) Original Images (b) Generated Images

Fig. 4. Comparision of original images(left) and generated images(right)
on MNIST with MVFM-GAN.

4.2 CIFAR-10

CIFAR-10 is an established computer-vision dataset used for
object recognition. It consists of 60,000 32×32 color images
containing one of 10 object classes, with 6000 images per
class. We use this data set to study semi-supervised learning,
as well as to examine the visual quality of generated samples
that can be achieved. The network architecture of MVFM-
GAN, shown in Table 3, as same as that of the original
Improved GAN.
We train the semi-supervised MVFM-GAN model on sets
of labelled samples of size 50,100,200,400,800 and 1000
per class The remaining samples are left unlabelled. Fig.5
compares the classification error obtained using Improved
GAN(FM) and MVFM-GAN. We then compare our method
with other methods and the experimental results on this
dataset are reported by averaging the classification error
over ten runs. Table 4 summarizes our results on the semi-
supervised learning task compared with other methods.
From the results, we can easily see our method achieves
better performance, with the error rate reduction of over 2%
compared to Improved GAN. Finally, by training the model,
some fake samples are generated as a by-product and these
generated samples look visually appealing and are of good
visual quality. Some original samples and samples gener-
ated during semi-supervised learning using MVFM-GAN
are shown in Fig. 6.

TABLE 3
Network architecture used for CIFAR-10

Stage Layer Layer Type
0 Input Noise

100 units
1 Dense layer

4*4*512 units+softPlus+BatchNorm
2 Transposed Conv2D Layer

Target Size(256,8,8)+Filter size(5,5)
+strides(2,2)+BatchNorm

Generator 3 Transposed Conv2D Layer
Target Size(256,8,8)+Filter size(5,5)
+strides(2,2)+BatchNorm

4 Transposed Conv2D Layer
Target Size(128,16,16)+Filter size(5,5)
+strides(2,2)+BatchNorm

5 Conv2D Layer
Target Size(3,32,32)+Filter size(5,5)
+strides(2,2)+BatchNorm

6 Input layer
Size(3,32,32)

7 Dropout Layer
dropout probability=0.2

8 Conv2D Layer
Size(96,32,32), Filter size(3,3),Strides(2,2)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

9 Conv2D Layer
Size(96,32,32), Filter size(3,3),Strides(2,2)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

10 Conv2D Layer
Size(96,16,16), Filter size(3,3),Strides(2,2)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

11 Dropout Layer
dropout probability=0.5

12 Conv2D Layer
Size(192,16,16), Filter size(3,3),Strides(2,2)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

Discriminator 13 Conv2D Layer
Size(192,16,16), Filter size(3,3),Strides(2,2)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

14 Conv2D Layer
Size(192,8,8), Filter size(3,3),Strides(2,2)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

15 Dropout Layer
dropout probability=0.5

16 Conv2D Layer
Size(192,6,6), Filter size(3,3),Strides(2,2)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

17 NIN Layer
Size(192,6,6)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

18 NIN Layer
Size(192,6,6)
+ReLU+Gaussian noise σ = 0.05
+weight Norm

19 Global pool layer
192 units

20 Dense Layer
(K classes) units
+ weight norm+softmax
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Fig. 5. CIFAR-10 classification error rates(%) evaluated after every
epoch for Improved GAN(FM) and MVFM-GAN† in semi-supervised
learning.(a)500 labelled samples,(b)1000 labelled samples,(c)2000
labelled samples,(d)4000 labelled samples,(e)8000 labelled sam-
ples,(f)10000 labelled samples.

TABLE 4
Percentage of incorrectly predicted test samples for a given number of

labelled samples on the CIFAR-10 data set

Model Error rate(%)
NL 4000

Ladder network 20.40±0.47
ALI 17.99±1.62

CatGAN 19.58±0.46
Triple GAN 16.99±0.36

Improved GAN 18.63±2.32
Our model 16.28±1.91

4.3 SVHN

SVHN is a real-world dataset for an image recognition
task. The SVHN dataset has 73,257 training samples and
26032 test points. We used the same architecture and ex-
perimental setup as for CIFAR-10 in Table 3. We train
the semi-supervised MVFM-GAN model in several experi-
ments, with labelled datasets of size 50,100,200 and 500 sam-
ples per class. The remaining samples are left unlabelled.
Fig.7 compares the SVHN classification error obtained by
training with Improved GAN(FM) and MVFM-GAN. The
performance of the MVFM-GAN system is much better

(a) Original Images (b) Generated Images

Fig. 6. Comparision of original images(left) and generated images(right)
on CIFAR-10 with MVFM-GAN.
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Fig. 7. SVHN dataset classification error rate(%) evaluated after every
epoch for Improved GAN(FM) and MVFM-GAN† in semi-supervised
learning.(a)500 labelled samples,(b)1000 labelled samples,(c)2000 la-
belled samples,(d)5000 labelled samples.

than that of the original Improved GAN, especially in the
case where there are only 50 labelled samples per class.
We then compared our method with other methods. The
experimental results on this dataset are reported by aver-
aging over ten runs. Table 5 summarizes our results in this
semi-supervised learning task. From the results, we can see
that our method exhibits superior performance. The fake
samples generated as a by-product of the proposed semi-
supervised learning method are of good visual quality. Fig.
8 shows some original samples and generated samples.

4.4 STL-10
STL-10 is a dataset of 96×96 color images with a 1:100 ratio
of labelled to unlabelled examples, making it an ideal fit
for our semi-supervised learning framework. The training
set consists of 5000 labeled images, and 100,000 unlabelled
images. The labeled images belong to 10 classes and were
extracted from the Imagenet dataset and the unlabelled
images come from a broader distribution of classes. Each
class has 800 testing images. We extensively modified a
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TABLE 5
Percentage of incorrectly predicted test samples for a given number of

labeled samples on the SVHN data set

Model Error rate(%)
NL 1000

TSVM 66.55
VAE(M1+M2) 36.02±0.10

ALI 7.41±0.65
Auxiliary DGM 22.86

Skip DGM 16.61±0.24
Improved GAN 8.11±1.3

Our model 6.56±0.87

(a) Original Images (b) Generated Images

Fig. 8. Comparision of original images(left) and generated images(right)
on SVHN with MVFM-GAN.

publicly available implementation of DCGAN using Ten-
sorFlow to achieve high performance, using a multi-GPU
implementation. MVFM-GAN learns some image statistics
and generate contiguous shapes with natural color and
texture but also learn some realistic objects. Some original
samples and samples generated during semi-supervised
learning using MVFM-GAN are shown in Fig. 9. We then
evaluate classification accuracy of each model on the test set.
The result is shown in table 6. Our method has comparable
performance with the state-of-the-art method CC-GAN.

5 CONCLUSION

We develop mean and variance feature matching(MVFM)
objective function for semi-supervised learning that incor-
porates the first and the second order moment of activa-
tions in the latent feature space. The aim is to capture the
manifold of the data and improve the training stability
of GAN. The motivation of our method is very intuitive

(a) Original Images (b) Generated Images

Fig. 9. Comparision of original images(left) and generated images(right)
on STL-10 with MVFM-GAN.

TABLE 6
Percentage of incorrectly predicted test samples for a given number of

labelled samples on the STL-10 data set

Model Error rate(%)
NL 5000

SSL-GAN 26.19±0.5
CC-GAN 22.21±0.8

Improved GAN 25.63±0.7
Our model 23.19±0.5

and it is a natured development of improved GAN [43].
Empirically, it outperforms Improved GAN and all other
baselines by a significant margin and establishes the state-
of-the-art results in semi-supervised learning on several
benchmarking datasets including MNIST, CIFAR-10, SVHN
and STL-10. The research results indicate that the proposed
method is a simple but effective method for semi-supervised
learning. As a by-product, MVFM-GAN generates realistic
images with good visual quality as the by-product can be
generated after training MVFM-GAN.
In future, a theoretical analysis of our method will be carried
out and the potential for its beneficial combination with
other generative models will be explored.
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